Introduction to Toxicology

Richard R. Rediske, Ph.D.
Annis Water Resources Institute
Grand Valley State University
Toxicology

Formerly

The Science of Poisons

Now

The science that deals with the adverse effects of chemicals on living organisms and assesses the probability of their occurrence
Outline

• History of Toxicology
• Dose Response
• Types of Toxicants
• Case Studies of alcohol and lead
• The Future
Historical Perspective

“...the appearance of disease in human populations is influenced by the quality of air, water, and food; the topography of the land; and general living habits.”

The ancient-Greek physician Hippocrates in his treatise Air, Water and Places 400 BC

http://classics.mit.edu/Hippocrates/airwatpl.mb.txt
All substances are poisons; there is none that is not a poison. The right dose differentiates a poison and a remedy.

Paracelsus (1493-1541)
The Father of Modern Toxicology
Spanish physician Orfila (1815) established toxicology as a distinct scientific discipline.
Mechanistic toxicology: The study of how a chemical causes toxic effects by investigating its absorption, distribution, and excretion.

Descriptive toxicology: The toxic properties of chemical agents are systematically studied for various endpoints using a variety of different organisms.

Clinical toxicology: They study of toxic effects of various drugs in the body, and are also concerned with the treatment and prevention of drug toxicity in the population.
Toxicology Today

Forensic toxicology: A branch of medicine that focuses on medical evidence of poisoning, and tries to establish the extent to which poisons were involved in human deaths.

Environmental toxicology: The study of the effects of pollutants on organisms, populations, ecosystems, and the biosphere.

Regulatory toxicology: The use of scientific data to decide how to protect humans and animals from excessive risk. Public or Private Sector.
Dose

The amount of chemical entering the body

This is usually given as

\[\text{mg of chemical/kg of body weight} = \text{mg/kg} \]

The dose is dependent upon

* The concentration
* The properties of the toxicant
* The timing and frequency of exposure
* The length of exposure
* The exposure pathway
What is a Response?

The degree of responses depend upon the dose and the organism

- Change from normal state
 - could be on the molecular, cellular, organ, or organism level--the symptoms
- Local vs. Systemic
- Reversible vs. Irreversible
- Immediate vs. Delayed
- Monotonic – response increases with dose (cyanide and many traditional toxicants)
- Nonmonotonic – response does not increase with dose (hormones, endocrine disruptors, micronutrients and vitamins)
CHEMICALS: Major Types of Toxicity

• Toxins – biological compounds (Ricin, botulism)
• Carcinogens - may induce cancer or increase its incidence and can affect any cells or tissues (benzene, vinyl chloride, benzo(a)pyrene)
• Mutagen - may induce hereditary genetic defects or increase their incidence and effect on the germ cells (gonads). (radiation, nitrosoamines)
• Teratogens - may induce non-hereditary congenital malformations or increase their incidence and effect on the growing fetus (rubella, thalidomide, PCBs, Dioxins)
• Endocrine disruptor – hormone mimic (PBDE, BPA)
CHEMICALS: Major Types of Toxicity

• Chronic toxicity: It involves Sub-lethal concentration and long-term exposure
• Chronic toxicity test is used to derive Effective Dose (ED_{50}): Is the dose by which half of the population has been affected
• Effect could be anything but death
• ED_{50} is obtained by plotting, for a given dose the proportion of the population that responded to that dose and all lower doses
CHEMICALS: Major Types of Toxicity

• Acute toxicity: It involves lethal concentrations and short-term exposures
• The end point is usually death
• An LD$_{50}$ is a dose of a toxic chemical that kills half of the population.
• LD$_{50}$ is obtained by plotting, for a given dose the proportion of the population that responded to that dose and all lower doses
Monotonic Dose Response

![Graph showing a monotonic dose response curve with data points and the LD50 value indicated.](image-url)
CHEMICALS: Major Types of Toxicity

- No Observable Adverse Effect Level (NOAEL) – the threshold where no effects are observed.
- Lowest Observable Adverse Effect Level (LOAEL) – the concentration level where effects are observed.
Potency – concentration to produce an effect.
CHEMICALS: Major Types of Toxicity

Cancer causing chemicals are assessed by risk

- One mutation has an inherent risk so one molecule of a toxicant may pose a theoretical risk.
- Organisms have repair functions for protection
- 1:1,000,000 risk is considered acceptable. (note: we can only measure 1:100 in the laboratory and must extrapolate the low risk level).
- Toxicity cannot be estimated by high dose experiments

Hormesis – U shaped dose response curve (nonmonotonic)

- Characterized by a low dose stimulation or beneficial effect and a high dose inhibitory or toxic effect.
- Essential nutrients, vitamins, ionizing radiation, aspirin, alcohol
Dose Response Curves

Dose-Effect Curves

- No-Threshold Toxicant
- Essential Nutrient
- Threshold Toxicant

Increasing adverse effect

Increasing Dose

0

Threshold

NOAEL

Duffus & Worth, ©IUPAC
Endocrine disruptors:

• Synthetic or naturally occurring chemicals that affect the Endocrine or hormonal system of animals

• May either:
 • Mimic hormones
 • Block hormone activities
 • Directly stimulate or inhibit the endocrine system
Hormones and Endocrine Disruptors

- Bind to receptor molecules
- Nonmonotonic dose response curves
- Stimulate at low doses
- No increasing effect at high doses due to receptor saturation
- Very complex reactions and cross reactivity
- Very low doses are significant
- Effect cannot be estimated by high dose toxicity testing
Endocrine Disruptors

Some chemicals, once inside the bloodstream, can “mimic” hormones.

If molecules of the chemical bind to the sites intended for hormone binding, they cause an inappropriate response.

Thus these chemicals disrupt the endocrine (hormone) system.
Tamoxifen and Cancer

Estrogen molecule binds to estrogen receptor

Estrogen receptor acquires changed shape

Estrogen receptor binds to coactivators

Tamoxifen molecule binds to estrogen receptor

Tamoxifen receptor does not acquire changed shape

Tamoxifen receptor cannot bind to coactivators
Vandenberg et al. 2012
Populations
(Drugs of abuse)
Ethanol

\[
\begin{array}{c}
\text{H} \\
\text{H} \\
\text{C} \\
\text{H} \\
\text{H}
\end{array}
\]

\[
\begin{array}{c}
\text{H} \\
\text{C} \\
\text{C} \\
\text{OH}
\end{array}
\]
Perceptions About Chemicals

• What drives our perceptions? Are chemicals bad?

HUMAN RISK PERCEPTION... is affected by the degree of pleasure / displeasure associated with the particular risk
<table>
<thead>
<tr>
<th>Agent</th>
<th>LD-50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl alcohol</td>
<td>10,000</td>
</tr>
<tr>
<td>Salt (sodium chloride)</td>
<td>4,000</td>
</tr>
<tr>
<td>Iron (Ferrous sulfate)</td>
<td>1,500</td>
</tr>
<tr>
<td>Morphine</td>
<td>900</td>
</tr>
<tr>
<td>Mothballs (paradichlorobenzene)</td>
<td>500</td>
</tr>
<tr>
<td>Aspirin</td>
<td>250</td>
</tr>
<tr>
<td>DDT</td>
<td>250</td>
</tr>
<tr>
<td>Cyanide</td>
<td>10</td>
</tr>
<tr>
<td>Nicotine</td>
<td>1</td>
</tr>
<tr>
<td>Tetrodotoxin (from fish)</td>
<td>0.01</td>
</tr>
<tr>
<td>Botulinum Toxin</td>
<td>0.00001</td>
</tr>
</tbody>
</table>
What type of toxic chemical is alcohol?

- Group 1 known Human Carcinogen
- Exhibits hormesis – small amounts are beneficial (cardiovascular system)
- Teratogen - fetal alcohol syndrome

“Of all the substances of abuse (including cocaine, heroin, and marijuana), alcohol produces by far the most serious neurobehavioral effects in the fetus.”

—Institute of Medicine Report to Congress, 1996.
Fetal Alcohol Syndrome Facts

• Alcohol diffuses through placenta
• Concentration in fetal blood is the same as in the mother’s blood within a few minutes
• The fetus is able to metabolize alcohol 10% as fast as the mother
• 1 in 200 individuals are affected by prenatal alcohol exposure.
Sequence of Human Development

Embryonic Development

First prenatal care visit

Developmental Progression & Susceptibility to Teratogens & Fetal Loss

Black - most sensitive
What is lead

- Lead is a soft gray metal element that occurs naturally in the earth.
- For many years, lead was added to:
 - paint,
 - gasoline,
 - Pipes and solder
 - batteries
- Banned in 1973 in paint
- Banned in 1976 in gasoline
- Banned in solder in 1993
What are the Sources of Lead

• Homes that have cracked and peeling old lead paint on their walls.

• Home renovations that disturb old lead paint can spread invisible lead dust.

• Lead from old lead paint may contaminate household dust and nearby soil.
How are people exposed to lead?

• Ingestion of foods, water, alcohol may be significant for certain populations.

• Ingestion of dusts is primary way general population, especially children, are exposed to lead.

• Inhalation of lead dust contributes to a build up in the body.
Childhood Risk Factors for Elevated BLLs (>10μg/dl)

<table>
<thead>
<tr>
<th>Pre-1946 Housing</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Hispanic Black</td>
<td>21.9%</td>
</tr>
<tr>
<td>Mexican American</td>
<td>13.0%</td>
</tr>
<tr>
<td>White</td>
<td>5.6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Income Level</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Income</td>
<td>16.4%</td>
</tr>
<tr>
<td>High Income</td>
<td>0.9%</td>
</tr>
</tbody>
</table>

NHANES III, and CDC Recommendations for BL Screening of Young Children (Dec. 2000)
SOURCES OF LEAD - House Dust

Uncontaminated - New inner-city home
 Floor Surface - 2-24 µg/sq ft

Contaminated - Old inner-city home
 Floor Surface - 33-486 µg/sq ft
How Does Lead Enter the Body?

Ingestion

Adults absorb about 6% of ingested lead. Fasting adults absorb more.
Children absorb much more lead (30-50% if well fed, and more, if fasting or malnourished).

It takes >10 years to turn over one half the body’s stored lead. Bone source slowly leaches into the blood.
Lead Exposure in utero

- Lead crosses the placenta in plasma.
- Pregnancy (and lactation) causes lead release from bone stores into plasma.
- Plasma lead is about 10% of circulating blood lead.
- Epidemiologic effects on CNS have been documented.
- Peak transfer is at 12-14 weeks gestation.
Cognitive Performance Deficits in Lead-Exposed Children

Deficits:
Psychomotor performance
Auditory and language processing
Sustained attention & concentration

Measured outcomes:
Less likely to graduate High School
More likely to be convicted of felonies
What happens when lead enters the body

- Lead is stored for long periods in mineralizing tissue such as teeth and bones.

- Lead is can be released again into the bloodstream from these sources during times of bodily stress, such as
 - pregnancy
 - breastfeeding
 - calcium deficiency
 - osteoporosis (thinning of the bones)
Lead Exposure

• Most lead exposure in the U.S. today occurs in older homes with deteriorated leaded paint.

• Children are at greatest risk of lead poisoning from their homes.

• Most children are exposed to lead in dust (not by eating paint chips).
Lead in home environments (continued)
Lead in home dust

- The more lead in the dust in a home, the higher the levels of lead in children.
- There is no safe threshold for lead.
What parts of the body does lead affect?

• The brain is **very** sensitive to lead.

• Exposure to high levels of lead can permanently affect the brain, bones, kidneys, and the heart.
What levels cause health effects

• Lead can cause harm even at very low levels, especially in young children.

• There is no safe threshold for lead.

• At very high levels, lead can cause brain damage, coma

• Adults experience similar effects, but generally at higher levels of exposure.
What are the effects of lead exposure on young children?

- Lowered IQ
- Learning disabilities
- Attention deficit and hyperactivity
- Other behavioral issues
- Impaired hearing
- Anemia
- Decreased growth
How to test for lead exposure

• Children should have their blood tested at ages one and two.

• Older children at risk of lead poisoning should also be tested.

• Adults who may be exposed to lead at work should also be tested.
How to prevent lead exposure

• If your home was built before 1978, you should have it tested for lead.

• Make sure all paint is in good condition.

• Wet-clean all surfaces, especially window sills, at least every week.

• Wash children’s hands frequently.

• Cover bare soil in the yard.

• Learn about lead-safe work practices when doing work on your home that disturbs paint.
Toxicants take many routes through the environment often as mixtures.
What is the role of Toxicology in Green Chemistry

- Linking molecular structure to hazard
- Focus less on minimizing risk through reducing exposure
- Focus more on minimizing hazard by designing safer chemicals
- Risk = Hazard \times Dose (Exposure)
- The hazardous nature of a substance can be controlled through structure manipulation

Approaches

Voutchkova et al 2009

Schug et al 2012
Estrogen vs Hormonally Active Agents

- Bisphenol A
- Hydroxy-PCB
- 4-Alkyphenols
- Phthalates
- 2,4,4',6-tetraCB
- Diethylstilbestrol
- 0,p'-DDT

A natural oestrogen

phenol group

Nonylphenol

mindfully.org
Summary

• Toxicology is a complex science based on the principle of dose and response.
• Environmental exposures further adds to this complexity.
• Focus more on minimizing hazard by designing safer chemicals
• Green chemistry can provide solutions!
Summary

Toxicology is a fascinating science that makes biology and chemistry interesting and relevant.

Understanding HOW (i.e. mechanism) something produces a toxic effect can lead to new ways of preventing or treating chemically-related diseases. Animal use in research is essential for medical progress.

Many diseases are the result of an interaction between our genetics (individual variability) and chemicals in our environment.

Toxicology provides an interesting and exciting way to apply science to important problems of social, environmental, and public health significance.
Your Role

Risk is a part of everyday life, and one’s decisions as to the ‘acceptability’ of a particular risk is influenced by knowledge.

We can try to increase the public’s knowledge about the risks and benefits of all things chemical.

You play a critical role in this effort, and we can’t do it without YOU.